Connectionist Speaker Normalization and Its Applications to Speech Recognition

نویسندگان

  • X. D. Huang
  • K. F. Lee
چکیده

Speaker normalization may have a significant impact on both speakeradaptive and speaker-independent speech recognition. In this paper, a codeworddependent neural network (CDNN) is presented for speaker normalization. The network is used as a nonlinear mapping function to transform speech data between two speakers. The mapping function is characterized by two important properties. First, the assembly of mapping functions enhances overall mapping quality. Second, multiple input vectors are used simultaneously in the transformation. This not only makes full use of dynamic information but also alleviates possible errors in the supervision data. Large-vocabulary continuous speech recognition is chosen to study the effect of speaker normalization. Using speaker-dependent semi-continuous hidden Markov models, performance evaluation over 360 testing sentences from new speakers showed that speaker normalization significantly reduced the error rate from 41.9% to 5.0% when only 40 speaker-dependent sentences were used to estimate CDNN parameters.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Connectionist speaker normalization and adaptation

In a speaker-independent, large-vocabulary continuous speech recognition systems, recognition accuracy varies considerably from speaker to speaker, and performance may be significantly degraded for outlier speakers such as nonnative talkers. In this paper, we explore supervised speaker adaptation and normalization in the MLP component of a hybrid hidden Markov model/ multilayer perceptron versi...

متن کامل

A Comparative Study of Gender and Age Classification in Speech Signals

Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...

متن کامل

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

Improving the performance of MFCC for Persian robust speech recognition

The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...

متن کامل

Connectionist ’viterbi Training: a New Hybrid Method for Continuous Speech Recognition

these procedures are well suited to speech recognition applications, in which Hybrid methods which combine hidden Markov models (HMMs) and connectionist techniques take advantage of what are. believed to be the strong points of each of the two approaches: the powerful discrimination-based learning of connectionist networks and the time-alignment capability of HMMs. Connectionist Viterbi Trainin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013